Abstract

Arabinoxylan (AX) is the predominant non-starch polysaccharide in wheat bran, known for its significant immunomodulatory activity. However, existing literature lacks comprehensive studies on AX fermentation by gut microbiota and its subsequent immunomodulatory mechanisms. In the present study, we aimed to investigate the effects of AX on the composition of gut microbiota and the characteristics of its immunomodulatory activity. For this purpose, an in vitro fermentation system and a cyclophosphamide-induced immunosuppressed mouse model were established to explore both the in vitro and in vivo effects of AX on gut microbiota and immune modulation. The results demonstrated that AX was metabolized by gut microbes and in turn to promoting the production of short-chain fatty acids (SCFAs), which concurrently led to a significant decrease in pH. Furthermore, AX treatment significantly changed the microbial composition, elevated the relative abundance of Actinobacteria while reducing that of Bacteroidetes. In the immunosuppressed mice, AX administration improved the thymus and spleen indices, mitigated spleen injury, and bolstered overall immunity. Moreover, AX altered the gut microbiota structure, increasing the abundance of Bacteroidetes and decreasing that of Firmicutes. These findings suggest that wheat bran-derived AX can modulate intestinal microbial composition, improve gut microecology, and enhance host immunity by targeting gut microbiota.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call