Abstract

This study aims to generate data which can be used as a potential starting point for the updating of the Philippine Water Quality Criteria and the determination of the true impact of land use to the fecal contamination of the Pampanga River Basin (PRB), the largest subwatershed of Manila Bay. Levels of fecal indicator bacteria (FIB) were determined in the selected tributaries of the PRB, representing three land use categories, namely, the forest/woodland (control), agricultural and residential lands. FIB were quantified in order to investigate the potential contribution of the selected areas in the fecal contamination of the PRB. The study was conducted in 2021 covering March, May, June, July, and September to represent the dry (March and May) and wet (June, July, and September) seasons. Counts of FIB, namely thermotolerant coliform, E. coli, and enterococci were qualitatively correlated with the results of the ocular survey and key informant interview based on known fecal contributors and their relevant rainfall data. FIB counts of water bodies in the selected agricultural and residential land use categories had Geometric Mean (GM) counts that are statistically greater than those of bodies of water near the representative forest/woodland (control), and exceeded the acceptable GM limits for all FIB, regardless of the season. Notably, the GM values recorded for the waters near the selected forest/woodland (control) passed the water quality criteria for all measured FIB parameters for both seasons. Furthermore, enterococci levels in the control site were statistically lower during the wet season. These initial findings suggest that agricultural and residential land use categories could be major contributors to the unacceptable water quality of tributaries of the Pampanga River Basin. The prevalence of thermotolerant coliforms and E. coli was noted regardless of rainfall and land use, indicating these FIB may not be adequate as water quality indicators. With their ability to survive and persist in fecally contaminated sediments in water bodies and in nutrient-poor environments, enterococci could be more definitive indicators of fecal contamination and microbiological quality of environmental waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call