Abstract
Due to the fast growing amount of user generated content (UGC) on social networks, the prediction of retweeting behavior is attracting significant attention in recent years. However, the existing studies tend to ignore the influence of implicit social influence and group retweeting factor factors. Also, it is still challenging to consider all related factors into a unified framework. To solve the above disadvantages, we propose a novel deep neural network fusion embedding-based deep neural network (FEBDNN) through the perspective of user embedding and tweets embedding for the author and the user’s historical tweets. Firstly, we propose dual auto-encoder (DAE) network for user embedding by integrating user’s basic features, explicit and implicit social influence and group retweeting factor. Then, we utilize the attention-based F_BLSTM_CNN(A_F_BLSTM_CNN) model for historical tweets’ representative embedding based on the combination of convolutional neural network (CNN) and bidirectional long short-term memory (BLSTM). Finally, we concatenate these embedding features into a vector and design a hidden layer and a fully connected softmax layer to predict the retweeting label. The experimental results demonstrate that the FEBDNN model compares favorably performance against the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.