Abstract

In this paper, a new model that can ultimately create its own set of perceptual features is proposed. Using a bidirectional associative memory (BAM)-inspired architecture, the resulting model inherits properties such as attractor-like behavior and successful processing of noisy inputs, while being able to achieve principal component analysis (PCA) tasks such as feature extraction and dimensionality reduction. The model is tested by simulating image reconstruction and blind source separation tasks. Simulations show that the model fares particularly well compared to current neural PCA and independent component analysis (ICA) algorithms. It is argued the model possesses more cognitive explanative power than any other nonlinear/linear PCA and ICA algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.