Abstract

AbstractThe predictive performance of classical scoring functions (SFs) seems to have reached a plateau. Currently, SFs relying on sophisticated machine learning techniques have shown great potential in binding affinity prediction and virtual screening. As one of the most indispensable components in the workflow of training a machine learning scoring function (MLSF), the featurization or representation process enables us to catch certain physical processes that are important for protein–ligand interactions and to obtain machine‐readable descriptors. Currently, according to how they are derived, the descriptors used in MLSFs for both continuous and binary binding affinity estimates can be grouped into two broad categories: handcrafted features and automated‐extraction features. Moreover, the automated‐extraction features emerge as a new featurization trend along with the application of deep learning algorithms. Here, we make a thorough summary of the advances in the featurization strategies for protein–ligand interactions in the context of MLSFs, with emphasis on the recently rising automated‐extraction features. We also discuss the similarity between protein–ligand interaction representations and small‐molecule representations, and the challenges confronted by the scientific community in characterizing protein–ligand interactions. We expect that this review could inspire the development of novel featurization approaches and boosted MLSFs.This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Software > Molecular Modeling Molecular and Statistical Mechanics > Molecular Interactions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.