Abstract

In this study, W-type hexagonal ferrite BaCo1.2Zn0.8Fe16O27 (BCZF) was synthesized via solid-state sintering and V2CTx-MXene was chemically etched from its V2AlC MAX phase. Subsequently, BCZF and V2CTx composites were synthesized by hydrothermal integration of V2CTx on the surface of BCZF bonded by electrostatic forces at varying mass ratios. The extensive heterostructure interfacial morphology of two dimensional V2CTx and BCZF plays an explicit role in tuning the dielectric and magnetic loss characteristics of the synthesized composites. The dielectric-magnetic synergistic loss mechanism caused by interfacial polarization, strong multi-reflections, scattering between MXene multilayer structures, conduction loss, and magnetic resonance effectively optimized impedance matching to improve the attenuation ability of the synthesized composites. Remarkably, the BCZF@10%V2CTx composite achieved strong electromagnetic wave absorption ability with an effective absorption bandwidth (RL < −10 dB) of 8.0 GHz (10–18 GHz) which is superior to that of contemporary magnetic–dielectric hybrid composites. These results present a novel perspective on magnetic V2CTx-MXene composites for microwave absorption applications, and provide a basis for the design and development of high-performance cloaking materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call