Abstract

Purpose: This study aimed to use gadolinium-enhanced cardiovascular magnetic resonance (LGE-CMR) scanning to examine the clinical feasibility of feature-tracking strain (FT-strain) analysis on compressed sensing (CS) cine cardiovascular magnetic resonance (CMR) imaging for detecting myocardial infarction (MI). Methods: We enrolled 37 patients who underwent conventional cine CMR, CS cine CMR, and LGE-CMR scanning to assess cardiovascular disease. FT-strain analysis was used to assess peak circumferential strain (p-CS) based on an 18-segment model in both cine CMR imaging modalities. Based on LGE-CMR imaging findings, myocardial segments were classified as remote, adjacent, subendocardial infarcted, and transmural infarcted. The diagnostic performance of p-CS for detecting MI was compared between CS cine CMR imaging and conventional cine CMR imaging using the receiver operating characteristic (ROC) curve analysis. Results: A total of 440 remote, 85 adjacent, 76 subendocardial infarcted, and 65 transmural infarcted segments were diagnosed on LGE-CMR imaging. There were significant between-group differences in p-CS on both conventional and CS cine CMR (p < 0.05 in each) imaging. The sensitivity and specificity of p-CS for identifying MI were 85% and 79% for conventional cine CMR imaging, and 82% and 77% for CS cine CMR imaging, respectively. There was no significant difference between conventional and CS cine CMR imaging in the area under the curve of p-CS (0.89 vs. 0.87, p = 0.15). Conclusion: FT-strain analysis of CS cine CMR imaging may help identify MI; it may be used alongside or instead of conventional CMR imaging.

Highlights

  • Assessment of cardiac function is important in patients with cardiovascular disease, for which echocardiography is widely used in clinical practice

  • Feature-tracking strain (FT-strain) analysis is a method of myocardial strain analysis on cardiovascular magnetic resonance (CMR) scans obtained through cine CMR imaging [6] [7]

  • The present findings indicate that data acquisition of the full cardiac cycle is important for accurate FT-strain analysis using compressed sensing (CS) cine CMR images, as a prospective real-time cine CMR scan may lack complete end-diastolic phase data, resulting in the underestimation of peak strain values relative to those obtained from retrospective conventional cine CMR scans [16]

Read more

Summary

Introduction

Assessment of cardiac function is important in patients with cardiovascular disease, for which echocardiography is widely used in clinical practice. Myocardial strain (longitudinal, circumferential, and radial strain) is useful for the assessment of both global and regional cardiac function [2] [3]. It is evaluated using two-dimensional speckle-tracking echocardiography (2D-STE), which has a greater prognostic value than LVEF [4] [5]. A blind area on echocardiography may prevent the assessment of the entire myocardium. Cardiovascular magnetic resonance (CMR) imaging has been found to have high objectivity, and it allows for the assessment of the whole myocardium

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call