Abstract

Gray Level Co-occurrence Matrix (GLCM) is one of the most popular texture analysis methods. The fundamental issue of GLCM is the suitable selection of input parameters, where many researchers depended on trial and observation approach for selecting the best combination of GLCM parameters to improve the texture classification, which is tedious and time-consuming. This paper proposes a new optimization method for the GLCM parameters using Artificial Bee Colony Algorithm (ABC) to improve the binary texture classification. For the testing, 13 Haralick features were extracted from the UMD database, which has been used with the multi-layer perceptron neural network classifier. The experimental results proved that, the proposed method has been succeeded to finding the best combination of GLCM parameters that leads to the best binary texture classification accuracy performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.