Abstract

Turbulent wall pressure fluctuation correlation functions were measured in water on a towed cylindrical model of length 129.8 m and diameter 3.8 cm for steady speeds ranging from 6.2 to 15.5 m/s. The drag on the model was measured with a strut-mounted load cell to provide estimates of the momentum thickness and friction velocity that are used for scaling the correlation functions. Very high momentum thickness Reynolds numbers Reθ were achieved, and varied from 4.8 × 105 to 1.1 × 106. The ratio of boundary layer thickness to cylinder radius was approximately 24, which is an order of magnitude greater than previous laboratory investigations. The ratio of momentum thickness to viscous length scale is significantly greater than for flat plate cases at comparable Reθ. A similarity scaling is shown to be more effective than outer or inner boundary layer scalings for collapsing the correlation functions. Comparisons with the early streamwise and transverse correlation measurements of Willmarth and Yang are favorable, and show consistent trends of a more rapid loss of correlated energy for cylindrical turbulent boundary layers than for flat plate cases. Convection velocities are also presented and shown to collapse well with separation scaled on outer variables. A simple model that relates the peak of the correlation function to the average coherence levels is shown to be valid for spatial separations less than the approximate momentum thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call