Abstract
The anomaly of the summer sea temperature is analyzed by a spatial-temporal synthetically rotated orthogonal function (REOF) at three different depths (0 m, 40 m, and 120 m) over the area 110°E~100°W and 30°S~60°N. The spatial-temporal distribution shows that the “signal” of annual anomaly is stronger in the sub-surface layer than the surface layer, and it is stronger in the eastern equatorial Pacific than in the western area. The spatial structure of the sea temperature anomaly at different layers is related to both the ocean current and the interaction of ocean and atmosphere. The temporal changing trend of the sub-surface sea temperature in different areas shows that the annual mean sea temperature increases and the annual variability evidently increases from the 1980s, and these keep the same trend with the increasing El Nino phenomenon very well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.