Abstract

Introduction: TRPV1 receptors play a significant physiological role. To study pharmacological activity of new agonists and antagonists is important for the development of new drugs. This paper reports on the features of polypeptide antagonists of TRPV1 based on in vivo data.
 Materials and methods: The study was performed on 250 mature white ICR male mice weighing 25–30 g. Tests were conducted to evaluate the pharmacological activity and biological properties of APHC1-3 and a hybrid polypeptide A13 in thermal pain,, inflammation and body temperature tests.
 Results and discussion: APHC1-3 polypeptides showed significant antinociceptive and analgesic activity in the dose range of 0.01–0.1 mg/kg, without causing hyperthermia. A single substitution of the aspartic acid residue of АРНС1 polypeptide at position 23 by transferring one asparagine residue from the cognate peptide АРНС3 led to a significant change in the properties of the molecule. A new polypeptide A13 did not alter the thermal sensitivity of the mice, but showed the most significant analgesic activity in the acid-induced pain model, unlike АРНС1. A13 inhibits TRPV1 and affects body temperature as a classic antagonist of this receptor.
 Conclusion: Antagonistic properties of A13 became different from the properties of both initial analgesic polypeptides. Polypeptides APHC1-3 can be referred to as a new class of modulators of TRPV1, which produce a pronounced analgesic effect without hyperthermia.

Highlights

  • TRPV1 receptors play a significant physiological role

  • The results of the study showed that partial inhibition of TRPV1 in vivo may be more useful than its complete inhibition

  • Despite the partial inhibition of TRPV1, polypeptides APHC1-3 significantly reduced pain response both in the tests directly related to the functions of TRPV1, and in general models of pain

Read more

Summary

Introduction

TRPV1 receptors play a significant physiological role. To study pharmacological activity of new agonists and antagonists is important for the development of new drugs. Tests were conducted to evaluate the pharmacological activity and biological properties of APHC1-3 and a hybrid polypeptide A13 in thermal pain,, inflammation and body temperature tests. Results and discussion: APHC1-3 polypeptides showed significant antinociceptive and analgesic activity in the dose range of 0.01–0.1 mg/kg, without causing hyperthermia. A new polypeptide A13 did not alter the thermal sensitivity of the mice, but showed the most significant analgesic activity in the acid-induced pain model, unlike АРНС1. A13 inhibits TRPV1 and affects body temperature as a classic antagonist of this receptor. Polypeptides APHC1-3 can be referred to as a new class of modulators of TRPV1, which produce a pronounced analgesic effect without hyperthermia. Modern strategies for searching for new potential analgesics are associated with changes in the sensitivity of nociceptors, affecting acid-sensitive ion channels.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.