Abstract

Data on the dependence of the growth rate of Si layers deposited onto Ge(111) by the hydride method on their thickness at the initial heteroepitaxy stage are reported. The effect of a Ge substrate within ten grown silicon single layers on the Si-film growth rate is demonstrated. Based on the data obtained, the kinetic coefficients responsible for the rate of the main physicochemical processes related to the interaction of hydride molecular beams with the growth surface are calculated. An analysis of the capture probability and rates of pyrolysis of the adsorbed Si(Ge) hydride molecules on the pure Ge(Si) surfaces reveals the dependence of their behavior on the growing-layer thickness. Comparison of the results obtained during Si-layer growth on Ge shows that the pure germanium surface has higher adsorption and catalytic abilities with respect to silane molecules than the pure Si surface. The unstrained pure Si surface has higher adsorption and catalytic characteristics with respect to Ge-hydride molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call