Abstract

The compression and burning of a fusion target ignited by a focused shock wave produced at the action of a time-profiled second harmonic laser pulse of a Nd laser have been calculated and theoretically studied. The main energy features of the shock ignition scheme have been considered. The use of the second harmonic radiation corresponds to a higher energy and a longer laser pulse necessary for ignition by this method compared to the use of the third harmonic radiation. Nevertheless, the method of ignition by the focused shock wave with the second harmonic radiation makes it possible to reach the fusion target gain that is two or three times higher than that at the traditional spark ignition with the laser pulse energy higher than in the former case by a factor of 1.5. The numerical calculations have been performed with one-dimensional hydrodynamic codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call