Abstract

Features of the conventional hydrogenation, disproportionation, desorption, recombination (HDDR) and solid-HDDR processes in some R–Fe–B (R is a mixture of Nd, Pr, Ce, La, Dy) ferromagnetic alloys were studied in the temperature range 20–990 °C and pressure range from 1×10 −3 Pa to 0.1 MPa. This was carried out by means of differential thermal analysis (DTA), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) methods. The hydride of the initial phase is formed by heating to 115 °C. The disproportionation of the alloys occurs in the temperature range from 320 to 800 °C. Φ-phase constitutes the base of the initial alloys. Among the disproportionation products, R-hydride, α-Fe and two borides (Fe 2B and R 1.1Fe 4B 4) were revealed. The initial phase in all the alloys is recovered after heating in vacuum to a temperature of 990 °C. Full hydrogen desorption occurs in two temperature ranges with the peaks at 200–320 and 630–715 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.