Abstract

Introduction. The immune system plays the key role in the formation of adaptive responses and is the most sensitive to environmental exposures. An immune response under exposure to viruses or other factors is induced by toll-like receptors stimulating production of pro-inflammatory cytokines. Simultaneous exposure to exogenous chemical pollutants in ambient air modifies the adaptation process.
 Materials and methods. An in vitro experiment was accomplished on samples of peripheral blood. The study focused on a mixed population of immune-competent cells (n=64 samples). Effects produced by exogenous factors (benz(a)pyrene, SARS-CoV-2) and managing elements (interleukin-1β, cortisol) were considered influencing factors. All the lymphocyte cultures were incubated for 72 hours; after that, the quantitative content of cytokines in the samples was determined by the ELISA tests.
 Results. The inhibition of cytokines was experimentally demonstrated when the SARS-CoV-2 vaccine antigen was introduced into cell culture in combination with cortisol and an immunomodulator (IL-6, IL-10), and a significant decrease in the level of INF-gamma in samples with the addition of IL-1β was also noted. Benz(a)pyrene exerted a catalytic effect on the cytokine-producing function of immunocompetent cells with an increase in the production of IL-6 and IFN-gamma relative to spontaneous production. Suppression of cytokines (IL-6, IFN-gamma, and IL-10) was observed in samples containing vaccine antigens SARS-CoV-2, compared with the spontaneous level, which suggests the formation of possible mechanisms of post-vaccination complications.
 Limitations. The study has no limitations associated with the use of the selected methods or characteristics of the research objects.
 Conclusions. Experimental modelling in vitro made it possible to estimate the additive effects of the mixed action of benz(a)pyrene and SARS-CoV-2 (vaccine antigen) on protein molecules and hyperproduction of inflammatory modulators was evaluated. The study aimed to facilitate investigation of the examined mechanism and development of relevant programs for preventing risks of negative effects produced on health by chemical and biological factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call