Abstract

The dependence of the critical current density jc on the magnitude and direction of the magnetic field H is investigated in thin epitaxial films of YBa2Cu3O7−δ having a high value of jc in the absence of field (∼106 A/cm2 at 77 K) and a thickness d less than twice the magnetic field penetration depth λ. It is found that the jc(H) curves have a low-field plateau both for fields perpendicular and parallel to the film. In a magnetic field perpendicular to the film, the “effective pinning” plateau extends to a field corresponding to a density of Abrikosov vortices threading the film at which it is no longer favorable for them all to be pinned at edge dislocations in the interblock walls, and a fraction of them become unpinned. In contrast, in a field parallel to the film the end of the plateau is unrelated to depinning of threading vortices parallel to the film; instead, jc(H) decreases after the plateau region because the magnetic field parallel to the film weakens the pinning of vortices perpendicular to the film. The low-field plateau on jc(H) for an in-plane is wider than that for the case of normal magnetization. Therefore, the dependence of jc on the angle between H and the normal to the film has a single maximum at which the field is lying in the film plane. In films obtained by laser or electron-beam evaporation of YBa2Cu3O7−δ or its constituents, the measurements of jc on which were made by an inductive method, the decrease of jc with increasing field in the film plane begins at fields lower than the first critical field for penetration of the vortices into the film plane. For the magnetron-deposited film, where jc was measured by a transport method, this decrease of jc begins in a field much higher than that critical field. The possible relationships between the parameters of the jc(H) curves and the first critical field for penetration of the vortices into the film plane are discussed, including some which lead to different angular dependences of the critical current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.