Abstract

Molecular dynamics simulation of metallic bicrystals has been carried out to investigate the behavior of the symmetrical tilt grain boundaries under shear loading. Σ5 and Σ9 grain boundaries in Ni and α-Fe were analyzed. It is found that behavior of the defect depends not only on the structure of boundaries but also on the type of crystal lattice. In particular it is shown that under external stress the grain boundary (GB) behaves differently in the BCC and FCC metal. A comparison of the values of displacement of various types of GB due to their migration caused by shear deformation is carried out. The results can help us to understand the features of the plastic deformation development in nanoscale polycrystals under shear loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call