Abstract

This article investigates the structures and conductive properties of polycrystals of Na3Fe2(PO4)3 obtained by solid-state and melt synthesis methods using concentrated optical radiation. It has been established that in the melt synthesis method, the material is synthesized under significantly non-equilibrium thermodynamic conditions, leading to the creation of deformations in the sample, which contribute to the enhancement of ionic conductivity. Additionally, the synthesis duration is reduced by half. Through a comparative assessment of the structural parameters and conductive properties of these materials, it is demonstrated that polycrystals obtained by the melt method exhibit better texture and higher ionic conductivity. The occurrence of deformations during the synthesis of α-Na3Fe2(PO4)3 under high temperature-gradient conditions indicates the elasticity of the crystalline framework {[Fe2(PO4)]3−}3∞. It is concluded that the non-equilibrium thermodynamic conditions of α-Na3Fe2(PO4)3 synthesis promote the formation of deformations in the crystalline structure of polycrystals, leading to a partial increase in symmetry and ionic conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.