Abstract

The results of studies of the structure formation process in an iron-based antifriction composite powder material infiltrated with a copper alloy (pseudo-alloy) during thermal and high-temperature thermomechanical treatment (HTMT) are presented. It is shown that after infiltration the structure of the pseudo-alloy consists of sections of the steel skeleton with a perlite structure almost homogeneous in carbon and a small amount of cementite, sections of the copper phase located along the boundaries and at the joints of the particles of the steel skeleton, sulfide inclusions mainly in the copper phase. In the process of hardening, carbon is redistributed in the particles of the steel skeleton; a layer 2–5 µm thick with an increased carbon content is formed at the boundary with the copper phase. During HTMT, the structure is refined, a macrotexture is formed, and the thickness of the copper phase interlayers decreases, depending on the degree of deformation. The degree of deformation also affects the structure of the steel skeleton. After HTMT with a degree of deformation of 30 %, the structure consists of structureless martensite, troosto-martensite and residual austenite, and in the areas adjacent to the copper phase the carbon content is slightly lower, with a degree of deformation of 50 % – structureless martensite, 25 % more austenite content, more uniform distribution of carbon. It has been established that, due to the activation of diffusion processes during deformation during HTMT, molybdenum sulfides decompose and form iron and copper sulfides of various compositions; molybdenum alloys the iron base or forms carbide. The investigation results can be used in the development of high-strength antifriction materials for heavily loaded friction units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call