Abstract

Abstract Research presented in this paper was initiated by the publication [A. D. Agaltsov and R. G. Novikov, Examples of solving the inverse scattering problem and the equations of the Veselov–Novikov hierarchy from the scattering data of point potentials, Russian Math. Surveys 74 (2019), 3, 373–386] and is based on its results. Two sets of the complex monopole scattering coefficients are distinguished among the possible values of these coefficients for nonabsorbing inhomogeneities. These sets differ in phases of the scattering coefficients. In order to analyze the features and possibilities of reconstructing the inhomogeneities of both sets, on the one hand, the inverse problem is solved for each given value of the monopole scattering coefficient using the Novikov functional algorithm. On the other hand, the scatterer is selected in the form of a homogeneous cylinder with the monopole scattering coefficient that coincides with the given one. The results obtained for the monopole inhomogeneity and for the corresponding cylindrical scatterer are compared in the coordinate and spatial-spectral spaces. The physical reasons for the similarities and differences in these results are discussed when the amplitude of the scattering coefficient changes, as well as when passing from one set to another.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call