Abstract

The mobility and variability of the atmosphere and near-Earth space make it extremely important to obtain experimental information about its dynamic characteristics – speed, wind direction and degree of turbulence. One of the promising methods for obtaining these data is vertical radar sounding of the atmosphere. Vertical sounding radars or wind profilometers are a relatively new type of equipment for studying the atmosphere and thermosphere. Vertical sounding radars are designed for remote non-contact determination of wind speed parameters above the sounding point in the troposphere and the lower part of the thermosphere. To obtain information on the dynamics of atmospheric movements the phenomenon of reflection of electromagnetic waves from turbulent formations and formations of a different nature is used. The temporal position of the reflected signal and the frequency shift due to the Doppler effect give accurate information about the height and speed of movement of atmospheric inhomogeneities. An analysis of the parameters of the reflected signals makes it possible to obtain in real time the altitude-time field of the wind speed and turbulence intensity. The physical principles underlying the operation of these stations allow continuous measurements, regardless of weather conditions. The article discusses the main methods for measuring the vertical profile of the atmosphere and the lower part of the thermosphere, scanning methods and classification of sounding means for the vertical profile of the atmosphere, as well as the features of the functioning and construction of vertical sounding radars with a low-element array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.