Abstract

Two-dimensional phononic crystals are fabricated on the surface of a lithium niobate crystal. A numerical method is developed for calculating the frequency dependences of the transmission and reflection coefficients of a surface acoustic wave for a rectangular region with two-dimensional periodic structure on the surface of an elastic body. Measurements of the frequency dependences of the reflection and transmission coefficients are performed for propagation in the part of the lithium niobate crystal surface on which two-dimensional phononic crystals were fabricated. Forbidden zones are found in the transmission spectra of the waves transmitted through phononic crystals. It is shown that, if the width of the incident wave beam is less than the width of the region with the two-dimensional periodic structure (the two-dimensional phononic crystal), then a resonant increase in the transmission coefficient arises near the center of the rejection band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.