Abstract

Factors influencing apoptosis of vertebrate eggs and early embryos have been studied in cell-free systems and in intact embryos by analyzing individual apoptotic regulators or caspase activation in static samples. Described here is a novel method for monitoring caspase activity in living Xenopus oocytes and early embryos. The approach, utilizing microinjection of a near-infrared caspase substrate that emits fluorescence only after its proteolytic cleavage by active effector caspases, has enabled the elucidation of otherwise cryptic aspects of apoptotic regulation. In particular, we demonstrate that brief caspase activity (ten minutes) is sufficient to cause apoptotic death in this system. We illustrate a cytochrome c dose threshold in the oocyte, which is lowered by Smac, a protein that binds thereby neutralizing inhibitor of apoptosis proteins. We show that meiotic oocytes develop resistance to cytochrome c, and that eventual death of oocytes arrested in meiosis is caspase-independent. Finally, data acquired through imaging caspase activity in the Xenopus embryo suggests that apoptosis in very early development is not cell-autonomous. These studies both validate this assay as a useful tool for apoptosis research and reveal subtleties in the cell death program during early development. Moreover, this method offers a potentially valuable screening modality for identifying novel apoptotic regulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.