Abstract

Desert wetlands play a significant role in flood regulation, water purification, biodiversity maintenance, and regional ecological environment improvement. Vegetation is a key factor affecting wetland function and it is important to study the features of plant community and the driving forces of plant community succession. The Ningxia Habahu National Nature Reserve, a typical desert wetland ecosystem, was selected to study the features of wetland plant communities including plant density, biomass and frequency, and vegetation coverage, as well as the habitats, structural characteristics, species composition, dominant population structure, and other characteristics of different ecosystems. Data was collected using long-term fixed-point observation, sampling monitoring, and other methods. The results showed that the total plant density, total biomass, Magalef index and Shannon–Wiener index of the different desert wetlands in the reserve area were all relatively low, which was caused by the poor habitat and salinization of the arid environment. There was no significant difference between the root–shoot ratio of the wetland plants in the reserve area and that of the construct species of other ecosystems. The specific leaf area of the wetland plants was also not significantly different from that of the construct species of other ecosystems. Vegetation nitrogen-to-phosphorus (N/P) ratios were found to be the key driving force for the succession of plant community in the desert wetlands. These results not only provide underlying insights for the improvement of species diversity and ecological environment, but also provide a scientific basis for the sustainable protection and restoration of typical desert wetlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call