Abstract

Expansion of gas-thermal spraying technology applications in various industries such as oil and gas, chemical, mechanical engineering, aviation, rocket building, agro-industrial, etc., can be achieved by obtaining a given set of operating properties with control of coating structure and phase composition. Direct control of the coating structural and phase composition is only possible after a complete establishment of a relationship between the factors determining the structural inheritance of the initial powder material and factors that influence a change during the coating deposition. Parameters and regimes of gas-thermal deposition technology should be substantiated not only empirically, but also scientifically. These processes have not been sufficiently studied in a materials science respect. In addition, information provided by raw material producers (fractional composition, chemical composition, powder material production technology, and less often flow parameters and bulk density) is not provided in its entirety. This work demonstrates the relationship between powder material production technology and features of coating structure formation by the High Velocity Air-Fuel (HVAF) deposition process of Fe-Cr14-Ni6-Si3 (iron-based) powder material used extensively in the oil and gas industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call