Abstract

ABSTRACT Electrochemical behaviour of 4.8 ± 0.2 nm graphene films on nickel and copper foams was investigated by cyclic voltammetry (CV). The graphene films were prepared by chemical vapor deposition and characterized by electron energy loss spectroscopy, elastic peak electron spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The CV of the [Ru(NH3)6]+2/+3 redox reaction was performed using these substrates. The obtained results demonstrated a high continuity of the deposited graphene film and independence of the electron transfer rate on them from the metal substrate used. The rate of outer-sphere electron transfer on the graphene surface appeared to be substantially less than that on the polished glassy carbon. Partial splitting of graphene layers due to wedged action of 2D adsorption layers, formed by camphor solution, led to the increase in double-layer capacitance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.