Abstract

Over the past decade, multiprocessor systems have been applied in computer technology. At present,multi-core processors are equipped not only with supercomputers, but also with the vast majority of mobile devices. This creates the need for students to learn the basic principles of their construction and functioning.One of the possible methods for analyzing the operation of multiprocessor systems is simulation modeling.Its use contributes to a better understanding of the effect of workload and structure parameters on performance. The article considers the features of the development of the simulation model for estimating the time characteristics of a multiprocessor computer system, as well as the use of the regenerative method of model analysis. The characteristics of the software implementation of the inverse kinematics solution of the robot are adopted as a workload. The given task consists in definition of turns in joints of the manipulator on known angular and linear position of its grasp. An analytical algorithm for solving the problem was chosen, namely, the method of simple kinematic relations. The work of the program is characterized by the presence of parallel calculations, during which resource conflicts arise between the processor cores, involved in simultaneous access to the memory via a common bus. In connection with the high information connectivity between parallel running programs, it is assumed that all processing cores use shared memory. The simulation model takes into account probabilistic memory accesses and tracks emerging queues to shared resources. The collected statistics reveal the productive and overhead time costs for the program implementation for each processor core involved. The simulation results show the unevenness of kernel utilization, downtime in queues to shared resources and temporary losses while waiting for other cores due to information dependencies. The results of the simulation are estimated by the regenerative method, which allows determining the average time spent searching for memory access in queues and the confidence intervals of these values for various degrees of trust. The given approach to the construction of the simulation model of a multiprocessor computer system and its analysis can be used to analyze the functioning of parallel computing systemsand for educational purposes for teaching students at the courses “Computer Systems” and “Simulation Modeling”.

Highlights

  • Multiprocessor systems have been applied in computer technology

  • At present,multi-core processors are equipped with supercomputers, and with the vast majority of mobile devices. This creates the need for students to learn the basic principles of their construction and functioning.One of the possible methods for analyzing the operation of multiprocessor systems is simulation modeling.Its use contributes to a better understanding of the effect of workload and structure parameters on performance

  • The article considers the features of the development of the simulation model for estimating the time characteristics of a multiprocessor computer system, as well as the use of the regenerative method of model analysis

Read more

Summary

Introduction

Multiprocessor systems have been applied in computer technology. Features of development and analysis of the simulation model of a multiprocessor computer system The article considers the features of the development of the simulation model for estimating the time characteristics of a multiprocessor computer system, as well as the use of the regenerative method of model analysis. The given approach to the construction of the simulation model of a multiprocessor computer system and its analysis can be used to analyze the functioning of parallel computing systemsand for educational purposes for teaching students at the courses “Computer Systems” and “Simulation Modeling”.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.