Abstract

The method of horizontally oriented (one-dimensional) crystallization (HOC) was applied for growth of chrome-doped beryllium aluminate (alexandrite) single crystals. The stratified hydrodynamic structure of melt in the boat-like crystallization container that predetermines major features of crystal growth was revealed by model experiment. Patterns of (1 2 0), (1 3 0), and (1 0 0) growth sectors of crystal volume and zones of preferred entrapment of gas–melt inclusions as well as efficient distribution coefficient of chrome on crystallization (inversion included) and distribution behavior of dopant along the grown crystals are illustrated and discussed. Occurrence of metal microinclusions of crystallization container material (Mo) in grown alexandrite crystals is analyzed. It is shown that alexandrite crystals grown by the HOC method have some advantages compared to the crystals grown by the Czochralski method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.