Abstract

The article describes features of operation and monitoring of low-water bridges, which are found on highways of regional, intermunicipal and local importance. Vibrations of the bridge span are considered in detail, taking into account its interaction with other structural elements and the environment. As a characteristic, the change of which takes into account the change in the state of the bridge structure, it is proposed to use the frequency of natural vibrations. To simulate the dynamic effects of transport and the dynamic behavior of individual elements and the entire structure as a whole, it is proposed to use viscoelastic elements of the Kelvin–Voigt type. When solving the problem, an approach has been implemented that makes it possible to take into account the anisotropic properties of the superstructure associated with various reinforcement along and across the roadway of the bridge, and to present the design scheme of the span not in the form of a beam supported at the edges with the help of hinges or viscoelastic dampers, but in the form of a plate, which can have different fxing conditions along the entire contour. The use of the proposed model and approach will make it possible to obtain the necessary data on the state of low-water bridges, for which there is often no possibility of visual inspection or instrumental inspection from the lower side of the bearing part of the superstructure. By the values of the frequency of natural vibrations, it is possible to estimate the water level above the low-water period and predict food situations, during which the roadway of the low-water bridge may be fooded.

Highlights

  • The article describes features of operation and monitoring of low-water bridges, which are found on highways of regional, intermunicipal and local importance

  • Vibrations of the bridge span are considered in detail, taking into account its interaction with other structural elements and the environment

  • The change of which takes into account the change in the state of the bridge structure, it is proposed to use the frequency of natural vibrations

Read more

Summary

Ригель опоры

Пролетные строения которых работают по балочной схеме, необходимо, чтобы первая форма частоты вертикальных колебаний удовлетворяла условиям f1, min £ f1 £ f1, max, 1,2 f1 £ f1, t ,. Графически описанные условия ограничения могут быть представлены в виде двух кривых, между которыми находится область допустимых значений для первой формы частоты собственных колебаний пролетного строения Как показывают результаты исследований отечественных и зарубежных ученых, данные графические условия ограничения хорошо подходят для скоростей экипажей от 100 до 450 км/ч, при этом чем выше значение скорости из этого интервала, тем ближе к верхнему пределу располагается расчетная кривая для частоты собственных колебаний [8, 10, 13,14,15].

A11 A33 - A123
Dopμ op ho2p
12. Мосты и трубы: свод правил
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call