Abstract

Based on Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical thickness (AOT) measurements in 1980–2001 a study is made of space/time patterns and difference between land and sea of AOT 0.50 µm thick over China, which are put into correlation analysis with synchronous extreme temperature indices (warm/cold day and night). Results suggest that 1) the long-term mean AOT over China is characterized by typical geography, with pronounced land-sea contrast. And AOT has significant seasonality and its seasonal difference is diminished as a function of latitude. 2) On the whole, the AOT displays an appreciably increasing trend, with the distinct increase in the eastern Qinghai-Tibetan plateau and SW China, North China, the mid-lower Changjiang (MiLY) valley as well as the South China Sea, but marginal decrease over western/northern Xinjiang and part of South China. 3) The AOT over land and sea is marked by conspicuous intra-seasonal and -yearly oscillations, with remarkable periods at one-, two-yr and more (as interannual periods). 4) Land AOT change is well correlated with extremely temperature indexes. Generally, the correlations of AOT to the extreme temperature indices are more significant in Eastern China with 110°E as the division. Their high-correlation regions are along the Southern China coastline, the Loess Plateau and the Sichuan Basin, and even higher in North China Plain and the mid-lower Changjiang River reaches. 5) Simulations of LMDZ-regional model indicate that aerosol effects may result in cooling all over China, particularly in Eastern China. The contribution of aerosol change may result in more decrease in the maximum temperature than the minimum, with decrease of 0.11/0.08 K for zonal average, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.