Abstract

This study introduced an innovative two-stage fermentation process to maximize sugar utilization and biobutanol production from alkaline-pretreated rice straw. The new bioconversion process was composed of an acidogenic fermentation process followed by an acetone–butanol–ethanol (ABE) fermentation process. A sugar-rich hydrolysate (90.4 g/L reducing sugar) and a high acid content fermentation broth (33.9 g/L butyric acid), both produced from rice straw, were mixed together to increase the yield of the biofuels in the ABE fermentation process. Butyric acid and acetic acid generated from the acidogenic fermentation process play a critical role in the ABE fermentation process, which was confirmed by gene expression analysis of five messenger RNAs. Compared with the conventional process, this unique strategy increased the final butanol concentration from 6.2 to 15.9 g/L with 3-fold lower cellulase loading. Furthermore, an enhanced production of 149 g butanol and 36 L hydrogen gas from 1 kg rice straw was achi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call