Abstract

Transition to chaos via the destruction of a two-dimensional torus is studied numerically using an example of the Hénon map and the Toda oscillator under quasiperiodic forcing and also experimentally using an example of a quasi-periodically excited RL-diode circuit. A feature of chaotic dynamics in these systems is the fact that the chaotic attractor in them has an additional zero Lyapunov exponent, which strictly follows from the structure of mathematical models. In the process of research, the influence of feedback is studied, in which the frequency of one of the harmonics of external forcing becomes dependent on a dynamic variable. Charts of dynamic regimes were constructed, examples of typical oscillation modes were given, and the spectrum of Lyapunov exponents was analyzed. Numerical simulations confirm that chaos resulting from the cascade of torus doubling has a close to the zero Lyapunov exponent, beside the trivial zero exponent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.