Abstract
The aim of this paper is to show the interest in fitting features with an α-stable distribution to classify imperfect data. The supervised pattern recognition is thus based on the theory of continuous belief functions, which is a way to consider imprecision and uncertainty of data. The distributions of features are supposed to be unimodal and estimated by a single Gaussian and α-stable model. Experimental results are first obtained from synthetic data by combining two features of one dimension and by considering a vector of two features. Mass functions are calculated from plausibility functions by using the generalized Bayes theorem. The same study is applied to the automatic classification of three types of sea floor (rock, silt and sand) with features acquired by a mono-beam echo-sounder. We evaluate the quality of the α-stable model and the Gaussian model by analyzing qualitative results, using a Kolmogorov–Smirnov test (K–S test), and quantitative results with classification rates. The performances of the belief classifier are compared with a Bayesian approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.