Abstract

The object of this study is an approach to solving the problems of designing service-oriented networks that warn about emergencies using dynamic programming. The main issue is the complexity of algorithmization of processes that describe the achievement of an optimal solution in multi-stage nonlinear problems. The possibilities of applying the Bellman optimality principle for solving the set tasks for the purpose of their application in the field of engineering and technology are determined. Based on the Bellman functional equation, a model of the optimal number of sensors in the monitoring system for warning of emergencies was built. A feature of the design is that using the classical Bellman equation, it is proposed to solve problems of various technical directions, provided that the resource determines what exactly makes it possible to optimize work in any way. Important with this approach is the planning of the action as an element of some problem with the augmented state. After that, the proposed structure in formal form extends to other objects. A problem was proposed and considered, which confirmed the mathematical calculations, as a result of which an optimal plan for replacing the sensors of the system was obtained; and the possibilities of significant cost reduction were identified. In the considered example, an optimal plan for replacing the system sensors was compiled and the possibility of reducing costs by 31.9 % was proved. The proposed option was used in the development of information technology for modeling a service-oriented network based on energy-efficient long-range protocols; some of the identified features were further developed in the design of a recommendation system for issuing loans and developing an interactive personnel training system

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call