Abstract

Surface electromyography (sEMG) signal is the combined effect of superficial muscle EMG and neural electrical activity. In recent years, researchers did large amount of human-machine system studies by using the physiological signals as control signals. To develop and test a new multi-classification method to improve performance of analyzing sEMG signals based on public sEMG dataset. First, ten features were selected as candidate features. Second, a genetic algorithm (GA) was applied to select representative features from the initial ten candidates. Third, a multi-layer perceptron (MLP) classifier was trained by the selected optimal features. Last, the trained classifier was used to predict the classes of sEMG signals. A special graphics processing unit (GPU) was used to speed up the learning process. Experimental results show that the classification accuracy of the new method reached higher than 90%. Comparing to other previously reported results, using the new method yielded higher performance. The proposed features selection method is effective and the classification result is accurate. In addition, our method could have practical application value in medical prosthetics and the potential to improve robustness of myoelectric pattern recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.