Abstract
Vehicle localisation is an important and challenging task in achieving autonomous driving. This work presents a box particle filter framework for vehicle self-localisation in the presence of sensor and map uncertainties. The proposed feature-refined box particle filter incorporates line features extracted from a multi-layer Light Detection And Ranging (LiDAR) sensor and information from OpenStreetMap to estimate vehicle states. A particle weight balance strategy is incorporated to account for the OpenStreetMap positional inaccuracy, which is assessed by comparing it to a high definition road map. The performance of the proposed framework is evaluated on a LiDAR dataset and compared with box particle filter variants. Experimental results show that the proposed framework achieves respectively 10% and 53% localisation performance improvement with reduced box volumes of 25% and 41%, when compared with the state-of-the-art interval analysis based box regularisation particle filter and the box particle filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.