Abstract

We describe a chain of algorithms for molecular surface and volumetric mesh generation. We take as inputs the centers and radii of all atoms of a molecule and the toolchain outputs both triangular and tetrahedral meshes that can be used for molecular shape modeling and simulation. Experiments on a number of molecules are demonstrated, showing that our methods possess several desirable properties: feature-preservation, local adaptivity, high quality, and smoothness (for surface meshes). We also demonstrate an example of molecular simulation using the finite element method and the meshes generated by our method. The approaches presented and their implementations are also applicable to other types of inputs such as 3D scalar volumes and triangular surface meshes with low quality, and hence can be used for generation/improvement of meshes in a broad range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.