Abstract
In this paper, the performance of featureless EMG pattern recognition in classifying hand and wrist movements are presented. The time-frequency distribution (TFD), spectrogram is employed to transform the raw EMG signals into time-frequency representation (TFR). The TFRs or spectrogram images are then directly fed into convolutional neural network (CNN) for classification. Two CNN models are proposed to learn the features automatically from the images without the need of manual feature extraction. The performance of CNN with different number of convolutional layers is examined. The proposed CNN models are evaluated using the EMG data from 10 intact and 11 amputee subjects through the publicly access NinaPro database. Our results show that CNN classifier offered the best mean classification accuracy of 88.04% in recognizing hand and wrist movements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.