Abstract
We present an approach to pronunciation modeling in which the evolution of multiple linguistic feature streams is explicitly represented. This differs from phone-based models in that pronunciation variation is viewed as the result of feature asynchrony and changes in feature values, rather than phone substitutions, insertions, and deletions. We have implemented a flexible feature-based pronunciation model using dynamic Bayesian networks. In this paper, we describe our approach and report on a pilot experiment using phonetic transcriptions of utterances from the Switchboard corpus. The experimental results, as well as the model's qualitative behavior, suggest that this is a promising way of accounting for the types of pronunciation variation often seen in spontaneous speech.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.