Abstract
Interpolating between points is a problem connected simultaneously with finding geodesics and study of generative models. In the case of geodesics, we search for the curves with the shortest length, while in the case of generative models, we typically apply linear interpolation in the latent space. However, this interpolation uses implicitly the fact that Gaussian is unimodal. Thus, the problem of interpolating in the case when the latent density is non-Gaussian is an open problem. In this article, we present a general and unified approach to interpolation, which simultaneously allows us to search for geodesics and interpolating curves in latent space in the case of arbitrary density. Our results have a strong theoretical background based on the introduced quality measure of an interpolating curve. In particular, we show that maximizing the quality measure of the curve can be equivalently understood as a search of geodesic for a certain redefinition of the Riemannian metric on the space. We provide examples in three important cases. First, we show that our approach can be easily applied to finding geodesics on manifolds. Next, we focus our attention in finding interpolations in pretrained generative models. We show that our model effectively works in the case of arbitrary density. Moreover, we can interpolate in the subset of the space consisting of data possessing a given feature. The last case is focused on finding interpolation in the space of chemical compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.