Abstract

Heterogeneous objects are objects composed of different constituent materials. In these objects, multiple desirable properties from different constituent materials can be synthesized into one part. In order to obtain mass applications of such heterogeneous objects, efficient and effective design methodologies for heterogeneous objects are crucial. In this paper, we present a feature based design methodology to facilitate heterogeneous object design. Under this methodology, designers design heterogeneous objects using high-level design components that have engineering significance. These high level components are form features and material features. In this paper, we first examine the relationships between form features and material features in heterogeneous objects. We then propose three synthesized material features in accordance with our examination of these features. Based on these proposed features, we develop a feature based design methodology for heterogeneous objects. Two enabling methods for this design methodology, material heterogeneity specification within each feature and combination of these material features, are developed. A physics (diffusion) based B-spline method is developed to (1) allow design intent of material variation be explicitly captured by boundary conditions, (2) ensure smooth material variation across the feature volume. A novel method, direct face neighborhood alteration, is developed to increase the efficiency of combining heterogeneous material features. Examples of using this feature based design methodology for heterogeneous object design, such as a prosthesis design, are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call