Abstract
The growing complexity of embedded multiprocessor architectures for digital media processing will soon require highly scalable communication infrastructures. Packet switched networks-on-chip (NoC) have been proposed to support the trend for systems-on-chip integration. In this paper, an advanced NoC architecture, called Xpipes, targeting high performance and reliable communication for on-chip multi-processors is introduced. It consists of a library of soft macros (switches, network interfaces and links) that are design-time composable and tunable so that domain-specific heterogeneous architectures can be instantiated and synthesized. Links can be pipelined with a flexible number of stages to decouple link throughput from its length and to get arbitrary topologies. Moreover, a tool called XpipesCompiler, which automatically instantiates a customized NoC from the library of soft network components, is used in this paper to test the Xpipes-based synthesis flow for domain-specific communication architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.