Abstract
Recently, there has been an increasing interest in extracting and annotating tables on the Web. This activity allows the transformation of textual data into machine-readable formats to enable the execution of various artificial intelligence tasks, e.g., semantic search and dataset extension. Semantic Table Interpretation (STI) is the process of annotating elements in a table. The paper explores Semantic Table Interpretation, addressing the challenges of Entity Retrieval and Entity Disambiguation in the context of Knowledge Graphs (KGs). It introduces LamAPI, an Information Retrieval system with string/type-based filtering and s-elBat, an Entity Disambiguation technique that combines heuristic and ML-based approaches. By applying the acquired know-how in the field and extracting algorithms, techniques and components from our previous STI approaches and the state of the art, we have created a new platform capable of annotating any tabular data, ensuring a high level of quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.