Abstract

Identifying small size images or small objects is a notoriously challenging problem, as discriminative representations are difficult to learn from the limited information contained in them with poor-quality appearance and unclear object structure. Existing research works usually increase the resolution of low-resolution image in the pixel space in order to provide better visual quality for human viewing. However, the improved performance of such methods is usually limited or even trivial in the case of very small image size (we will show it in this paper explicitly). In this paper, different from image super-resolution (ISR), we propose a novel super-resolution technique called feature super-resolution (FSR), which aims at enhancing the discriminatory power of small size image in order to provide high recognition precision for machine. To achieve this goal, we propose a new Feature Super-Resolution Generative Adversarial Network (FSR-GAN) model that transforms the raw poor features of small size images to highly discriminative ones by performing super-resolution in the feature space. Our FSR-GAN consists of two subnetworks: a feature generator network G and a feature discriminator network D. By training the G and the D networks in an alternative manner, we encourage the G network to discover the latent distribution correlations between small size and large size images and then use G to improve the representations of small images. Extensive experiment results on Oxford5K, Paris, Holidays, and Flick100k datasets demonstrate that the proposed FSR approach can effectively enhance the discriminatory ability of features. Even when the resolution of query images is reduced greatly, e.g., 1/64 original size, the query feature enhanced by our FSR approach achieves surprisingly high retrieval performance at different image resolutions and increases the retrieval precision by 25% compared to the raw query feature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.