Abstract
Feature subset selection is an efficient step to reduce the dimension of data, which remains an active research field in decades. In order to develop highly accurate and fast searching feature subset selection algorithms, a filter feature subset selection method combining maximal information entropy (MIE) and the maximal information coefficient (MIC) is proposed in this paper. First, a new metric mMIE-mMIC is defined to minimize the MIE among features while maximizing the MIC between the features and the class label. The mMIE-mMIC algorithm is designed to evaluate whether a candidate subset is valid for classification. Second, two searching strategies are adopted to identify a suitable solution in the candidate subset space, including the binary particle swarm optimization algorithm (BPSO) and sequential forward selection (SFS). Finally, classification is performed on UCI datasets to validate the performance of our work compared to 9 existing methods. Experimental results show that in most cases, the proposed method behaves equally or better than the other 9 methods in terms of classification accuracy and F1-score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.