Abstract

This paper presents a genetic-based feature selection algorithm for object recognition. Firstly, the proposed algorithm encodes a solution with a binary chromosome. Secondly, the initial population was generated randomly. Thirdly, a crossover operator and a mutation operator are employed to operate on these chromosomes to generate more competency chromosomes. The probability of the crossover and mutation are adjusted dynamically according to the generation number and the fitness value. The proposed algorithm is tested using the features extracted from cotton foreign fiber objects. The results indicate that the proposed algorithm can obtain the optimal feature subset, and can reduce the classification time while keeping the classification accuracy constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.