Abstract

In recent years, several screening methods have been published for ultrahigh-dimensional data that contain hundreds of thousands of features, many of which are irrelevant or redundant. However, most of these methods cannot handle data with thousands of classes. Prediction models built to authenticate users based on multichannel biometric data result in this type of problem. In this study, we present a novel method known as random forest-based multiround screening (RFMS) that can be effectively applied under such circumstances. The proposed algorithm divides the feature space into small subsets and executes a series of partial model builds. These partial models are used to implement tournament-based sorting and the selection of features based on their importance. This algorithm successfully filters irrelevant features and also discovers binary and higher-order feature interactions. To benchmark RFMS, a synthetic biometric feature space generator known as BiometricBlender is employed. Based on the results, the RFMS is on par with industry-standard feature screening methods, while simultaneously possessing many advantages over them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.