Abstract
Feature selection has attracted significant attention in data mining and machine learning in the past decades. Many existing feature selection methods eliminate redundancy by measuring pairwise inter-correlation of features, whereas the complementariness of features and higher inter-correlation among more than two features are ignored. In this study, a modification item concerning feature complementariness is introduced in the evaluation criterion of features. Additionally, in order to identify the interference effect of already-selected False Positives (FPs), the redundancy-complementariness dispersion is also taken into account to adjust the measurement of pairwise inter-correlation of features. To illustrate the effectiveness of proposed method, classification experiments are applied with four frequently used classifiers on ten datasets. Classification results verify the superiority of proposed method compared with seven representative feature selection methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.