Abstract
The introduction of multispectral imaging in pathology problems such as the identification of prostatic cancer is recent. Unlike conventional RGB color space, it allows the acquisition of large number of spectral bands within the visible spectrum. This results in a feature vector of size greater than 100. For such high dimensionality problems, pattern recognition techniques suffer from the well-known curse-of-dimensionality problem. The two well known techniques to solve this problem are feature extraction and feature selection. A feature selection technique using tabu search with an intermediate-term memory is proposed. The cost of a feature subset is measured by leave-one-out correct-classification rate of a nearest-neighbor (1-NN) classifier. Experiments have been carried out on textured multispectral images taken at 16 spectral channels and the results have been compared with a reported classical feature extraction technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.