Abstract
Fetal heart rate helps in diagnosing the well-being and also the distress of fetal. Cardiotocograph (CTG) monitors the fetal heart activity to estimate the fetal tachogram based on the evaluation of ultrasound pulses reflected from the fetal heart. It consists in a simultaneous recording and analysis of fetal heart rate signal, uterine contraction activity and fetal movements. Generally CTG comprises more number of features. Feature selection also called as attribute selection is a process of selecting a subset of highly relevant features which is responsible for future analysis. In general, medical datasets require more number of features to predict an activity. This paper aims at identifying the relevant and ignores the redundant features, consequently reducing the number of features to assess the fetal heart rate. The features are selected by using unsupervised particle swarm optimization (PSO)-based relative reduct (US-PSO-RR) and compared with unsupervised relative reduct and principal component analysis. The proposed method is then tested by applying various classification algorithms such as single decision tree, multilayer perceptron neural network, probabilistic neural network and random forest for maximum number of classes and clustering accuracies like root mean square error, mean absolute error, Davies---Bouldin index and Xie---Beni index for minimum number of classes. Empirical results show that the US-PSO-RR feature selection technique outperforms the existing methods by producing sensitivity of 72.72 %, specificity of 97.66 %, F-measure of 74.19 % which is remarkable, and clustering results demonstrate error rate produced by US-PSO-RR is less as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.